Another class of simple graded Lie conformal algebras that cannot be embedded into general Lie conformal algebras
نویسندگان
چکیده
In a previous paper by the authors, we obtain first example of finitely freely generated simple Z-graded Lie conformal algebra linear growth that cannot be embedded into any general algebra. this paper, obtain, as byproduct, another class such algebras classifying G=⊕i=−1∞Gi satisfying following, G0≅Vir, Virasoro algebra; Each Gi for i≥−1 is Vir-module rank one.
منابع مشابه
Graded Lie Algebras of Maximal Class Ii
We describe the isomorphism classes of infinite-dimensional graded Lie algebras of maximal class over fields of odd characteristic.
متن کاملGraded Lie Algebras of Maximal Class Iv
We describe the isomorphism classes of certain infinite-dimensional graded Lie algebras of maximal class, generated by an element of weight one and an element of weight two, over fields of odd characteristic.
متن کاملGraded Simple Lie Algebras and Graded Simple Representations
For any finitely generated abelian group Q, we reduce the problem of classification of Q-graded simple Lie algebras over an algebraically closed field of “good” characteristic to the problem of classification of gradings on simple Lie algebras. In particular, we obtain the full classification of finite-dimensional Q-graded simple Lie algebras over any algebraically closed field of characteristi...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملSimple Conformal Algebras Generated by Jordan Algebras
1 Background and Motivation We start with an example of affine Kac-Moody algebras and the Virasoro algebra. In this talk, F will be a field with characteristic 0, and all the vector spaces are assumed over F. Denote by Z the ring of integers and by N the set of nonnegative integers. Let 2 ≤ n ∈ N. Set sl(n,F) = {A ∈ Mn×n(F) | tr A = 0}, (1.1) 〈A,B〉 = tr AB for A,B ∈ sl(n,F), (1.2) where Mn×n(F)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2021.09.004